

IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY

ISSN: 2277-9655

SOME REMARKS ON BIPOLAR VAGUE S-SPACES

S. Cicily Flora* & I. Arockiarani*

*Department of Mathematics, Nirmala College for Women, Coimbatore-18

DOI: 10.5281/zenodo.1218529

ABSTRACT

In this work, we introduce the notion of S-space and almost S-space on bipolar vague topological space with some of its properties. The interrelations between newly defined spaces and other spaces are also discussed.

KEYWORDS: Bipolar vague G_{δ} -set, Bipolar vague F_{σ} -set, Bipolar vague S-space, Bipolar vague submaximal space, Bipolar vague almost S-spaces

I. INTRODUCTION

In order to deal with uncertainties, the idea of fuzzy sets and fuzzy set operations was introduced by Zadeh [12]. The theory of fuzzy topological space was studied and developed by C.L.Chang [3]. The paper of Chang paved the way for the subsequent tremendous growth of the numerous fuzzy topological concepts. Later, the vague set theory was introduced by W. L. Gau and D. J. Buehrer [5], as a generalizations of Zadeh's fuzzy set theory.Bipolar-valued fuzzy sets, which are introduced by Lee [8], are an extension of fuzzy sets whose membership degree range is enlarged from the interval [0, 1] to [−1, 1]. Using the notion of bipolar-valued fuzzy sets, Jun et al. [6] dealt with subalgebras and closed ideals of BCH-algebras based on bipolar-valued fuzzy sets. A.K. Mishra [9] introduced the concepts of P-spaces as generalizations of ω_a -additive spaces of Sikorski [10] and C. Goffman [4]. The concept of p-spaces in fuzzy setting was defined by G. Balasubramanian [11]. Amost P-spaces in classical topology was initiated by R. Levy [7].

In this paper several characterizations of bipolar vague S-space and bipolar vague almost S-space are studied and the conditions under which an bipolar vague submaximal space becomes a bipolar vague S-space are also analyzed.

II. PRELIMINARIES

Definition 2.1[8]: Let X be the universe. Then a bipolar valued fuzzy set, A on X is defined by positive membership function μ_A^+ , that is μ_A^+ : $X \to [0,1]$, and a negative membership function μ_A^- , that is $\mu_A^- : X \to [-1,0]$. For the sake of simplicity, we shall use the symbol $A = \{ \langle x, \mu_A^+(x), \mu_A^-(x) \rangle : x \in X \}$.

Definition 2.2[5]: A vague set A in the universe of discourse U is a pair (t_A, f_A) where $t_A : U \rightarrow [0,1]$, $f_A: U \to [0,1]$ are the mapping such that $t_A + f_A \leq 1$ for all $u \in U$. The function t_A and f_A are called true membership function and false membership function respectively. The interval $[t_A, 1-f_A]$ is called the vague value of *u* in *A*, and denoted by $v_A(u)$, i.e $v_A(u) = [t_A(u), 1 - f(u)]$.

Definition 2.3[1]: Let X be the universe of discourse. A bipolar-valued vague set A in X is an object having the form $A = \{ (x, [t_A^+(x), 1 - t_A^+(x)], [-1 - t_A^-(x), t_A^-(x)] \} : x \in X \}$ where $[t_A^+, 1 - t_A^+] : X \to [0,1]$ and $[-1-f_A^-, t_A^-]: X \to [-1,0]$ are the mapping such that $t_A^+ + f_A^+ \leq 1$ and $-1 \leq t_A^- + f_A^-$. The positive membership degree $[t_A^+(x), 1 - f_A^+(x)]$ denotes the satisfaction region of an element x to the property

ISSN: 2277-9655

corresponding to a bipolar-valued set A and the negative membership degree $[-1-f_A^-(x),t_A^-(x)]$ denotes the satisfaction region of \bar{x} to some implicit counter property of \bar{A} . For a sake of simplicity, we shall use the notion of bipolar vague set $v_A^+ = [t_A^+, 1 - t_A^+]$ and $v_A^- = [-1 - t_A^-, t_A^-]$.

Definition 2.4[1]: A bipolar vague set $A = [v_A^+, v_A^-]$ of a set U with $v_A^+ = 0$ implies that $t_A^+ = 0, 1 - f_A^+ = 0$ and $v_A^- = 0$ implies that $t_A^- = 0, -1 - f_A^- = 0$ $t_A^- = 0, -1 - f_A^- = 0$ for all $x \in U$ is called zero bipolar vague set and it is denoted by 0 .

Definition 2.5[1]: A bipolar vague set $A = [v_A^+, v_A^-]$ of a set U with $v_A^+ = 1$ implies that $t_A^+ = 1, 1 - f_A^+ = 1$ and $v_{A}^{-} = -1$ $v_A^- = -1$ implies that $t_A^- = -1, -1 - f_A^- = -1$ for all $x \in U$ is called unit bipolar vague set and it is denoted by 1.

Definition 2.6[1]: Let $A = x$, $[t_A^+, 1 - f_A^+]$ $[-1 - f_A^-, t_A^-]$ and $B = x$, $[t_B^+, 1 - f_B^+]$ $[-1 - f_B^-, t_B^-]$ be two bipolar vague sets then their union, intersection and complement are defined as follows:

1.
$$
A \cup B = \{(x, [t_{A \cup B}^+(x), 1 - f_{A \cup B}^+(x)], [-1 - f_{A \cup B}^-(x), t_{A \cup B}^-(x)]\}/x \in X\}
$$
 where
\n $t_{A \cup B}^+(x) = \max\{t_A^+(x), t_B^+(x)\}, t_{A \cup B}^-(x) = \min\{t_A^-(x), t_B^-(x)\}$ and
\n $1 - f_{A \cup B}^+(x) = \max\{1 - f_A^+(x), 1 - f_B^+(x)\},$
\n $-1 - f_{A \cup B}^-(x) = \min\{-1 - f_A^-(x), -1 - f_B^-(x)\}.$
\n2. $A \cap B = \{(x, [t_{A \cap B}^+(x), 1 - f_{A \cap B}^+(x)], [-1 - f_{A \cap B}^-(x), t_{A \cap B}^-(x)]\}/x \in X\}$ where
\n $t_{A \cap B}^+(x) = \min\{t_A^+(x), t_B^+(x)\}, t_{A \cap B}^-(x) = \max\{t_A^-(x), t_B^-(x)\}$ and
\n $1 - f_{A \cap B}^+(x) = \min\{1 - f_A^+(x), 1 - f_B^+(x)\},$
\n $-1 - f_{A \cap B}^-(x) = \max\{-1 - f_A^-(x), -1 - f_B^-(x)\}.$
\n3. $\overline{A} = \{(x, [f_A^+(x), 1 - t_A^+(x)], [-1 - t_A^-(x), f_A^-(x)])\}/x \in X\}$ for all $x \in X$.

Definition 2.7[1]: Let (X, BV_{τ}) a bipolar vague topological space and $A = \langle x, [t_A^+, 1 - t_A^+][-1 - t_A^-, t_A^-] \rangle$ be a BVS in X. Then the bipolar vague interior and bipolar vague closure of *A* are defined by,

Bvcl(*A*) = \cap {*K*:*K is a BVCS in X and* $A \subseteq K$ }, *Bv* int(*A*) = \cup {*G*:*G is a BVOS in X and G* \subseteq *A*}

Note that *bvcl*(*A*) is a BVCS and *bv*int(*A*) is a BVOS in *X* . Further,

- 1. A is a BVCS in X iff $Bvel(A) = A$,
- 2. A is a BVOS in X iff Bv int(A) = A

Definition 2.8[2]: A bipolar vague set A in a bipolar vague topological space (X, τ) is called bipolar vague dense if there exists no bipolar vague closed B in (X, τ) such that $A \subset B \subset 1$.

Definition 2.9[2]: A bipolar vague set A in a bipolar vague topological space (X, τ) is called bipolar vague nowhere dense set if there exists no bipolar vague open set B in (X, τ) such that $B \subset BVal(A)$. That is, *BV* int $(BVcl(A)) = 0$.

The complement of a bipolar vague first category sets in (X, τ) is a bipolar vague residual set in (X, τ) .

Definition 2.11[2]: Let (X, τ) be bipolar vague topological space. Then (X, τ) is said to bipolar vague Baire space if BV int $(\bigcup_{i=1}^{\infty} A_i) = 0$ BV $int(\bigcup_{i=1}^{n} A_i) = 0$, where A_i 's are bipolar vague nowhere dense sets in (X, τ) .

Definition 2.12[2]: A bipolar vague topological space (X, τ) is called a bipolar vague D-Baire space if every bipolar vague first category set in (X, τ) is a bipolar vague nowhere dense set in (X, τ) . That is, (X, τ) is a bipolar vague D-Baire space if BV int $(BVcl(A)) = 0$ for each bipolar vague first category set A in (X, τ) .

III. BIPOLAR VAGUE S-SPACE

Definition 3.1: A bipolar vague set A in a bipolar vague topological space (X, τ) is called a bipolar vague G_{δ} – set in (X, τ) if $A = \bigcap_{i=1}^{\infty} A_i$ $= \bigcap_{i=1} A_i$ where $A_i \in \tau$ for $i \in I$.

Definition 3.2: A bipolar vague set A in a bipolar vague topological space (X, τ) is called a bipolar vague F_{σ} – set in (X, τ) if $A = \bigcup_{i=1}^{\infty} A_i$ $= \bigcup_{i=1} A_i$ where $\overline{A}_i \in \tau$ for $i \in I$. In other words, the complement of bipolar vague G_{δ} – set in (X, τ) is a bipolar vague F_{σ} – set in (X, τ) .

Definition 3.3: A bipolar vague topological space (X, τ) is called a bipolar vague S-space if countable intersection of bipolar vague open sets in (X, τ) is bipolar vague open. i.e. every non-zero bipolar vague G_{δ} – set in (X, τ) is bipolar vague open in (X, τ) .

Theorem 3.4: If A is a non zero bipolar vague F_{σ} – set in a S-space (X, τ) , then A is a bipolar vague closed set in (X, τ) .

Proof: Let A be a non-zero bipolar vague F_{σ} – set in (X, τ) , $A = \bigcup_{i=1}^{\infty} A_i$ $=\bigcup_{i=1} A_i$ where A_i 's are bipolar vague closed in (X, τ) . Then $\overline{A} = \bigcup_{i=1}^{\infty} A_i = \bigcap_{i=1}^{\infty} \overline{A_i}$ Ξ, $^{\circ}$ Ξ, $= \bigcup_{i=1} A_i = \bigcap_{i=1} A_i$. Now A_i 's are bipolar vague closed in (X, τ) , implies that A_i 's are bipolar vague open in (X, τ) . Hence we have $\overline{A} = \bigcap_{i=1}^{\infty} \overline{A_i}$ $= \bigcap_{i=1} A_i$, where $A \in \tau$. Then \overline{A} is a bipolar vague G_{δ} – set in (X, τ) . Since (X, τ) is a bipolar vague S-space, A is a bipolar vague open in (X, τ) . Therefore *A* is a bipolar vague closed set in (X, τ) .

Theorem 3.5: If the bipolar vague topological space (X, τ) is a bipolar vague S-space, then BV $\text{int}(\bigcap_{i=1}^{\infty} A_i) = \bigcap_{i=1}^{\infty} BV$ $\text{int}(A_i)$ ∞ $(A_i) = \bigcap_{i=1} BV \text{ int}(A_i)$ where A_i 's are bipolar vague open sets in (X, τ) .

Proof: Let A_i 's be non-zero bipolar vague open sets in a bipolar vague S-space (X, τ) . Then $A = \bigcap_{i=1}^{\infty} A_i$ $=\bigcap_{i=1}A_i$ is a bipolar vague G_{δ} -set in (X, τ) . Since (X, τ) is a bipolar vague S-space, the bipolar vague G_{δ} -set A is bipolar vague open in (X, τ) . Hence, we have $BV\operatorname{int}(A) = \operatorname{int}(A)$. This implies that BV $\text{int}(\bigcap_{i=1}^{\infty} A_i) = \bigcap_{i=1}^{\infty} A_i = \bigcap_{i=1}^{\infty} BV$ $\text{int}(A_i)$ Ξ, ∞ Ξ, ∞ $\bigcap_{i=1}^{\infty} A_i$ = $\bigcap_{i=1}^{\infty} BV$ **int**(A_i) and hence BV **int**($\bigcap_{i=1}^{\infty} A_i$) = $\bigcap_{i=1}^{\infty} BV$ **int**(A_i) Ξ ∞ $\bigcap_{i=1} A_i$) = $\bigcap_{i=1} BV$ int(A_i) where A_i 's are bipolar vague open sets in (X, τ) .

Theorem 3.6: If A_i 's are bipolar vague closed sets in a bipolar vague S-space (X, τ) , then $BVol(\bigcup_{i=1}^{\infty} A_i) = \bigcup_{i=1}^{\infty} A_i$ ∞ $(\bigcup_{i=1} A_i) = \bigcup_{i=1} A_i$.

Proof:Let A_i 's be a bipolar vague closed sets in a bipolar vague S-space (X, τ) which implies that A_i 's are bipolar vague open sets in (X, τ) . Let $\mu = \bigcap_{i=1}^{\infty} \overline{A_i}$ $\mu = \bigcap_{i=1} A_i$. Then μ is a non-zero bipolar vague G_{δ} – set in (X, τ) . Since the bipolar vague topological space (X, τ) is a bipolar vague S-space, BV int $(\mu) = \mu$, which implies that BV $\text{int}(\bigcap_{i=1}^{\infty} \overline{A_i}) = \bigcap_{i=1}^{\infty} \overline{A_i}$ ∞ $\text{int}(\bigcap_{i=1}^{\infty} \overline{A_i}) = \bigcap_{i=1}^{\infty} \overline{A_i}$. Then $BVol(\bigcup_{i=1}^{\infty} A_i) = \bigcup_{i=1}^{\infty} A_i$ ∞ $\bigcup_{i=1}^{\infty} A_i$ $= \bigcup_{i=1}^{\infty} A_i$. Hence we have $BVol\bigoplus_{i=1}^{\infty} A_i$ $= \bigcup_{i=1}^{\infty} A_i$ ∞ $(\bigcup_{i=1} A_i) = \bigcup_{i=1} A_i$.

Theorem 3.7: If the bipolar vague topological space (X, τ) is a bipolar vague S-space and if A is a bipolar vague first category set in (X, τ) , then A is not a bipolar vague dense set in (X, τ) .

Proof: Assume the contrary, suppose that A is a bipolar vague first category set in (X, τ) such that $BVol(A) = 1$. Then, $A = \bigcup_{i=1}^{\infty} A_i$ $= \bigcup_{i=1} A_i$, where A_i 's are bipolar vague nowhere dense sets in (X, τ) . Now $\overline{BVol(A_i)}$ is a bipolar vague open set in (X, τ) . Let $\mu = \bigcap_{i=1}^{\infty} \overline{BVol(A_i)}$ $\mu = \bigcap_{i=1} BVol(A_i)$. Then μ is a non-zero bipolar vague G_{δ} – set in (X, τ) . Now we have $\bigcap_{i=1}^{n} BVol(A_i) = \bigcup_{i=1}^{n} BV \text{ int}(A_i) \subseteq \bigcup_{i=1}^{n} A_i = A$ $^{\circ}$ ∞ ∞ $\bigcap_{i=1} BVol(A_i) = \bigcup_{i=1} BV \text{ int}(A_i) \subseteq \bigcup_{i=1} A_i = A$. Hence $\mu \subseteq A$. Then $BVint(\mu) \subseteq BVint(A) = BVol(A) = 0$ ie., $BVint(\mu) = 0$. Since (X, τ) is a bipolar vague S-space, $\mu = BV$ int(μ) which implies that $\mu = 0$, a contradiction to μ being a non-zero bipolar vague G_{δ} – set in (X, τ) . Hence $BVol(A) \neq 1$.

Definition 3.8: A bipolar vague topological space (X, τ) is called a bipolar vague submaximal space if for each bipolar vague set A in (X, τ) such that $BVol(A) = 1$, then $A \in \tau$ in (X, τ) .

Theorem 3.9: If each bipolar vague G_{δ} – set is a bipolar vague dense set in a bipolar vague submaximal space (X, τ) , then (X, τ) is a bipolar vague S-space.

Proof: Let A be a bipolar vague G_{δ} – set in a bipolar vague submaximal space (X, τ) . Then, by hypothesis, A is a bipolar vague dense set in (X, τ) . Since (X, τ) , is a fuzzy submaximal space, the bipolar vague dense set A in (X, τ) is a bipolar vague open set in (X, τ) . i.e., every bipolar vague G_{δ} – set in (X, τ) is a bipolar vague open set in (X, τ) . Therefore (X, τ) is a bipolar S-space.

ISSN: 2277-9655

Theorem 3.10: If BV int(A) = 0, where A is a bipolar vague F_{σ} – set in a bipolar vague submaximal space (X, τ) , then (X, τ) is a bipolar vague S-space.

Proof: Let A be a bipolar vague G_{δ} – set in a bipolar vague submaximal space (X, τ) . Then, A is a bipolar vague F_{σ} – set in (X, τ) . Then, by hypothesis, BV int(A) = 0 for a vague F_{σ} – set A in (X, τ) . This implies that $BVol(A) = 1$. Then A is a bipolar vague dense set in (X, τ) . since (X, τ) is a bipolar vague submaximal space, the bipolar vague dense set A in (X, τ) is a bipolar vague open set in (X, τ) . i.e., every bipolar G_{δ} - set in (X, τ) is a bipolar vague open set in (X, τ) . Therefore (X, τ) is a bipolar vague Sspace.

Theorem 3.11: If each bipolar vague F_{σ} – set is a bipolar vague nowhere dense set in a bipolar vague submaximal space (X, τ) , then (X, τ) is a bipolar vague S-space.

Proof: Let A be a bipolar vague F_{σ} – set in a bipolar vague submaximal space (X, τ) such that BV int($BVol(A)$) = 0. Then, BV int($A) \subseteq BV$ int($BVol(A)$), implies that BV int(A) = 0. Now *BV* int(*A*) = 0 for a bipolar vague F_{σ} - set in a bipolar vague submaximal space (X, τ) . Then, by Theorem 3.10, (X, τ) is a bipolar vague S-space.

Theorem 3.12: If $BVol(BV \text{ int}(A)) = 1$, for each bipolar vague G_{δ} – set A in a bipolar vague submaximal space (X, τ) . Then (X, τ) is a bipolar vague S-space.

Proof: Let A be a bipolar vague F_{σ} – set in a bipolar vague submaximal space (X, τ) . Then A is a bipolar vague G_{δ} - set in (X, τ) . By hypothesis, $BVol(BV \text{ int}(\overline{A})) = 1$. Then $BVol(BV \text{ int}(\overline{A})) = 0$. This implies that $(BV\text{int}(BVcl(A))) = 0$. i.e. $BV\text{int}(BVcl(A)) = 0$ and hence A is a bipolar vague nowhere dense set in (X, τ) . Thus the bipolar vague F_{σ} – set A is a bipolar vague nowhere dense set in a bipolar vague submaximal space (X, τ) . Hence by Theorem 3.11, (X, τ) is a bipolar vague S-space.

Theorem 3.13: If A is a bipolar vague residual set in a bipolar vague submaximal space (X, τ) , then A is a bipolar vague G_{δ} – set in (X, τ) .

Proof: Let A be a bipolar vague residual set in a bipolar vague submaximal space (X, τ) . Then A is a bipolar vague first category set in (X, τ) and hence $\overline{A} = \bigcup_{i=1}^{\infty} A_i$ = $=\bigcup_{i=1} A_i$, where A_i are bipolar vague nowhere dense sets in (X, τ) . Since A_i 's are bipolar vague nowhere dense set $BVint(BVcl(A_i)) = 0$. Then, BV $int(A_i) \subseteq BV$ $int(BVol(A_i))$ implies that BV $int(A_i) = 0$. This implies that BV $int(A_i) = 1$ and hence $BVol(A_i) = 1$. Since (X, τ) is a bipolar vague submaximal space, the bipolar vague dense sets in A_i 's are bipolar vague open sets in (X, τ) . Then A_i 's are bipolar vague closed sets in (X, τ) . Hence $\overline{A} = \bigcup_{i=1}^{\infty} A_i$ $=\bigcup_{i=1}$ where A_i 's are bipolar vague closed sets in (X, τ) implies that \overline{A} is a bipolar vague F_σ – set in (X, τ) . Therefore A is a bipolar vague G_{δ} – set in (X, τ) .

Theorem 3.14: If A is a bipolar vague residual set in a bipolar vague submaximal and bipolar vague S-space (X, τ) , then A is a bipolar vague open set in (X, τ) .

Proof: Let A be a bipolar vague residual set in a bipolar vague submaximal and bipolar vague S-space (X, τ) . Since A is bipolar vague residual set in a bipolar vague submaximal space (X, τ) , by Theorem 3.13, A is a bipolar vague G_{δ} – set in (X, τ) . Since (X, τ) is a bipolar vague S-space, the bipolar vague G_{δ} – set in (X, τ) is a bipolar vague open set in (X, τ) . Hence a bipolar vague residual set A in a bipolar vague submaximal and bipolar vague S-space (X, τ) is a bipolar vague open set in (X, τ) .

Theorem 3.15: If A is a bipolar vague nowhere dense set in a bipolar vague submaximal space (X, τ) , then *A* is a bipolar vague closed set in (X, τ) .

Proof: Let A be a bipolar vague nowhere dense set in a bipolar vague submaximal space (X, τ) . Then we have BV int($BVal(A)$) = 0 and BV int($A) \subseteq BV$ int($BVal(A)$), implies that BV int(A) = 0. Then *BV* int(*A*) = 1 implies that $BVol(A) = 1$ and hence A is a bipolar vague dense set in (X, τ) . Since (X, τ) is a bipolar vague submaximal space, A is a bipolar vague open set in (X, τ) . Therefore the bipolar vague nowhere dense set A is a bipolar vague closed in (X, τ) .

Theorem 3.16: If a bipolar vague S- space (X, τ) is a bipolar vague submaximal and bipolar vague Baire space, then (X, τ) is a bipolar vague D-Baire space.

Proof: Let the bipolar vague S-space (X, τ) be a bipolar vague submaximal and bipolar vague Baire space. Let A be a bipolar vague first category set in (X, τ) . Since (X, τ) is a bipolar vague Baire space, *BV* int(*A*) = 0. Then, *BV* int(*A*) = 1. This implies that *BVcl*(\overline{A}) = 1 and hence \overline{A} is a bipolar vague dense set in (X, τ) . Since (X, τ) is a bipolar vague submaximal space, A is a bipolar vague open set in (X, τ) . Then, A is a bipolar vague closed set in (X, τ) and hence $BVol(A) = A$. Now *BV* int(*BVcl*(*A*)) = *BV* int(*A*), implies that *BV* int(*BVcl*(*A*)) = 0. Then *A* is a bipolar vague nowhere dense set in (X, τ) . Hence, each bipolar vague first category set in (X, τ) is a bipolar vague nowhere dense set in (X, τ) . Therefore (X, τ) is a bipolar vague D-Baire space.

Definition 3.17: A bipolar vague topological space (X, τ) is called a *bipolar vague almost* S –space if for every non-zero bipolar vague G_{δ} – set in (X, τ) , BV int $(A) \neq 0$ in (X, τ) .

Definition 3.18: Let $A = x$, $[t_A^+, 1 - f_A^+]$ $[-1 - f_A^-, t_A^-] >$ in a bipolar vague topological space (X, τ) is said to be bipolar vague regular closed set if $A = BVol(BV)$ int(*A*))

Theorem 3.19: If A is a bipolar vague F_{σ} – set in a bipolar vague almost S-space (X, τ) , then, $BVol(A) \neq 1$.

Proof: Let A be a bipolar vague F_{σ} – set in a bipolar vague almost S-space (X, τ) . Then, A is a bipolar vague G_{δ} – set in (X, τ) . Since (X, τ) is a bipolar vague almost S-space, for the bipolar vague G_{δ} – set A we have BV int $(\overline{A}) \neq 0$. This implies that $BVol(A) \neq 0$ and hence we have $BVol(A) \neq 1$.

Theorem 3.20: If each non-zero bipolar vague G_{δ} – set is a bipolar vague regular closed set in a bipolar vague topological space (X, τ) , then (X, τ) is a bipolar vague almost S-space.

BV int(*A*) \neq 0. Assume the contrary. Then BV int(A) = 0 will imply that $BVol(BV)$ int(*A*)) = $BVol(0) = 0$ and hence we will have $A = 0$, a contradiction to A being a non-zero bipolar vague G_{δ} – set in (X, τ) . Hence we must have BV int $(A) \neq 0$, for a bipolar vague G_{δ} – set in (X, τ) and therefore (X, τ) is a bipolar vague almost S-space.

Theorem 3.21: If each non-zero bipolar vague first category set is a bipolar vague dense set in a bipolar vague topological space (X, τ) , then (X, τ) is not a bipolar vague almost S-space.

Proof: Let A be a bipolar vague first category set in (X, τ) such that $BVol(A) = 1$. Then $A = \bigcup_{i=1}^{\infty} A_i$ $=\bigcup_{i=1} A_i$, where

 A_i 's are bipolar vague nowhere dense sets in (X, τ) . Now $BVol(A_i)$ is a bipolar vague open set in (X, τ) .

Let $\mu = \bigcap_{i=1}^{\infty} \overline{BVol(A_i)}$ $\mu = \bigcap_{i=1} BVol(A_i)$ then μ is a G_{δ} set in (X, τ) . Now $\begin{array}{c} \n\mathcal{D}_i = \bigcap_{i=1} BVol(A_i) = \bigcup_{i=1} BV \text{ int}(A_i) \subseteq \bigcup_{i=1} A_i = A_i \n\end{array}$ ∞ Ξ. ∞ Ξ, ∞ $\mu = \bigcap_{i=1} BVol(A_i) = \bigcup_{i=1} BV \text{ int}(A_i) \subseteq \bigcup_{i=1} A_i = A$, i.e., $\mu \subseteq \overline{A}$. Then $BV \text{ int}(\mu) \subseteq BV \text{ int}(\overline{A})$ and hence BV int(μ) $\subseteq BVol(A) = 0$, i.e., BV int(μ) = 0. Hence, for the bipolar vague G_{δ} - set μ in (X, τ) , *BV* int(μ) = 0. Therefore (X, τ) is not a bipolar vague almost S-space.

Theorem 3.22: If δ is a bipolar vague residual set in a bipolar vague almost S-space (X, τ) , then there exists a bipolar vague G_{δ} – set μ in (X, τ) such that $\mu \subseteq \delta$ in (X, τ) . Proof: Let δ be a bipolar vague residual set in (X, τ) . Then, δ is a bipolar vague first category set in (X, τ) . Let $\lambda = \overline{\delta}$. Then $\lambda = \bigcup_{i=1}^{\infty} \lambda_i$ $= \bigcup_{i=1} \lambda_i$, where λ_i 's are bipolar vague nowhere dense sets in (X, τ) . Now $BVol(\lambda_i)$ is a bipolar vague open set in (X, τ) . Let $\mu = \bigcap_{i=1}^{\infty} \overline{BVol(\lambda_i)}$ $=\bigcap_{i=1}BVol(\lambda_i)$. Then μ is a G_{δ} - set in (X,τ) . Since (X, τ) is a bipolar vague almost S-space, BV int(μ) $\neq 0$, in (X, τ) . Let BV int(μ) = γ , where $\gamma \in \tau$. Now $\mu = \bigcap_{i=1}^{\infty} \overline{BVel(\lambda_i)} = \bigcup_{i=1}^{\infty} BV \operatorname{int}(\lambda_i) \subseteq \bigcup_{i=1}^{\infty} \lambda_i = \overline{\lambda}$ Ξ, ∞ Ξ, ∞ $\bigcap_{i=1} BVol(\lambda_i) = \bigcup_{i=1} BV$ int $(\lambda_i) \subseteq \bigcup_{i=1} \lambda_i = \lambda$ i.e., $\mu \subseteq \delta$. Thus, if δ is a bipolar vague residual set in bipolar vague almost S-space (X, τ) , then there exists a bipolar vague G_{δ} – set μ in (X, τ) such that $\mu \subseteq \delta$ in (X, τ) .

IV. REFERENCES

- [1] Cicily Flora. S and Arockiarani. I, A New class of generalized bipolar vague sets, International Journal of Information Research and Review, 3(11), (2016), 3058-3065.
- [2] Cicily Flora. S and Arockiarani. I, On Bipolar vague Baire spaces, Bulletin of Mathematics and Statistics Research.
- [3] Chang. C.L, Fuzzy Topological Spaces, J. Math. Anal. Appl. 24, (1968), 182-190.
- [4] Cohen. L.W and Goffman. C, A theory of transfinite convergence, Trans. Amer. Math. Soc., 66(1949), 65-74.
- [5] Gau. W. L, Buehrer. D.J, Vague sets, IEEE Transactions on Systems, Man and Cybernatics, 23(2), (1993), 610-614.
- [6] Jun Y. B and Song S. Z, Subalgebras and closed ideals of BCH-algebras based on bipolar-valued fuzzy sets, Sci. Math. Jpn. 68 (2008), no. 2, 287–297.
- [7] Levy. R, Almost P-spaces, Canad. J. Math., XXIX(2), (1977), 284-288.

[Flora * *et al.,* **7(4): April, 2018] Impact Factor: 5.164**

IC[™] Value: 3.00 CODEN: IJESS7

ISSN: 2277-9655

- [8] Lee. K.M, Bipolar-valued fuzzy sets and their operations, Proc. Int. Conf. on Intelligent Technologies, Bangkok, Thailand, (2000), 307-312.
- [9] Misra. A.K, A topological view of P-spaces, Gen. Toplogy Appl., 2(4), (1972), 349-362.
- [10] Sikorski. R, Remarks on spaces of high power, Fund. Math., 37, (1950), 125-136.
- [11] Thangaraj. G and Balasubramanian. G, On Fuzzy basically disconnected spaces, J. Fuzzy Math, 9(1), (2001), 103-110.
- [12] Zadeh L.A, "Fuzzy sets", Information and Control, 8, (1965), 338-353

CITE AN ARTICLE

Flora, S. C., & Arockiarani, I. (n.d.). SOME REMARKS ON BIPOLAR VAGUE S-SPACES. *INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY, 7*(4), 250-257.